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1 Introduction

Membranes are an essential part of every living cell. Determining the nanome-
ter scale structure of these partitions is of interest for the understanding of im-
portant cellular processes on a molecular level, including, for example, trans-
port mechanisms into and out of the cell interior and the functioning of protein
sensors embedded in the membrane [1].

In ”real” space, probes such as atomic force and electron microscopies, at
present, can provide localized images of a material surface with nanometer
scale resolution. However, scattering techniques employing neutrons and x
rays have proven to be especially well-suited for ”viewing”, in comparable
detail, the distribution of matter beneath the surface. The reasons for this
subsurface sensitivity are manifold, but principally are a consequence of the
wave nature of the radiation, the relative strengths of interaction (between
photon and atomic electrons or between neutron and nucleus), and the ability
to accurately measure and analyze the diffraction pattern that the material
density distribution of the film gives rise to.

The sensitivity of diffraction as a probe of membrane structure is consid-
erably enhanced if a homogeneous specimen of the film can be constrained
to lie on a flat surface (either a solid or liquid substrate). A membrane so
confined is, effectively, a quasi two- dimensional scattering object. Treating
the neutron as a plane wave, having a wavevector k proportional to its mo-
mentum, the coherent (in phase), elastic (no energy transfer) reflection of that
neutron from a flat film can be then separated into two distinct types, specu-
lar and nonspecular. Specular scattering refers to the condition in which the
glancing angle θ between the reflected neutron wavevector and the surface is
equal to that of the incident wave. In this case the momentum transfer is ex-
actly perpendicular to the surface. Analysis of the specular reflectivity reveals
the depth profile of the film’s density along the surface normal. If there are
no variations in the composition or material density within the plane of the
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film, then only specular scattering can occur. In a case where in–plane fluc-
tuations of the density are present, the specular component of the reflected
intensity is caused by a film density that is averaged, at a given depth, over
the in–plane area for which the neutron plane wavefront is coherent (typically
of the order of microns). In addition, however, in–plane fluctuations produce
nonspecular scattering wherein the momentum transfer has a component par-
allel to the surface. Nonspecular scattering data thus contains information
about in–plane structure. Nonspecular reflectometry has great potential for
the study of biofilms, for example, in determining the sizes and distribution
of various entities, such as cholesterol ”rafts”, within the plane of a mem-
brane. However, research in this area is not yet as developed as that involving
specular reflectometry. The reasons for this involve a number of technical
difficulties, including the preparation of specimens of sufficient size and ho-
mogeneity and the theoretical interpretation of the nonspecular scattering,
particularly at wavevector transfers where the Born approximation (discussed
below) is not valid. The present Chapter is concerned primarily with spec-
ular reflection. The interested reader is referred elsewhere for discussions of
nonspecular scattering, e.g. ref. [2, 3].

The resolution of a material distribution in real space deduced from diffrac-
tion data is, ultimately, inversely proportional to the range in wavevector
transfer Q over which the reflected intensity is measured. The wavevector
transfer for the reflected beam is kf − ki = −2k sin(θ) = −4π sin(θ)/λ) =
−2k0z, where k0z is the component of the incident wavevector normal to
the film. We will always define Q = 2k0z, so that the reflected wavevec-
tor transfer is −Q. For instance, the spatial resolution in the compositional
depth profile obtained from analysis of the specular reflectivity (defined as
the reflected intensity divided by the incident intensity) measured out to a
wavevector transfer of 0.7 Å−1 corresponds to a spatial resolution of the order
of 0.5 nm. Given the strength of available neutron sources, sample areas of
several square millimeters or more are therefore necessary in practice to ob-
tain sufficiently accurate data. Reflectivity experiments (i.e., ”reflectometry”)
conducted over a range of wavevector transfers similar to that just given are
to be distinguished from diffraction studies performed at higher wavevector
transfers corresponding to interatomic scale resolution.

The purpose of this contribution is to provide an overview of the ex-
perimental and theoretical methods now employed in the study of mem-
brane structures by specular neutron reflectometry. Nonetheless, a reasonable
amount of detail is included here so that the researcher new to the technique
can better judge what structural information is obtainable from reflectome-
try and can assess what actually is required to prepare a suitable specimen,
perform measurements, and subsequently analyze the data. Reviews of cur-
rent research in which neutron reflectometry has been applied to the study
of biological or biomimetic membrane structures, including systems with em-
bedded proteins and peptides, are given in other contributions of this book
by Lu, Gutberlet et al. and elsewhere [4]. However, a representative example
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of a neutron reflectometry study of a lipid bilayer membrane into which the
peptide melittin has been introduced is included here, to further illustrate the
technique.

2 Theory

The theory of neutron reflectivity and diffraction is well-established [5, 6, 7,
8, 9, 10], although there have been relatively recent developments in meth-
ods for phase determination and inversion (see, for example, the review [11]
and references therein). This Section summarizes key features of the theory
pertinent to the study of thin films and membranes.

2.1 The Exact (”Dynamical”) Solution

The specular reflectivity from a flat surface or film effectively reduces to a
one-dimensional wave mechanics problem (see Merzbacher [13], for example)

−∂2ψ(z)
∂z2

+ 4πρ(z)ψ(z) = k2
0zψ(z) , (1)

where k0z is the wavevector of the neutron in vacuum and ρ(z) is the the scat-
tering length density (SLD) ”profile,” which describes the neutron interaction
with the film and its surrounding media everywhere along the z–axis, nor-
mal to the film surface. For neutrons with wavelengths of the order of several
ångstroms, the SLD at any ”point” is the compositionally weighted average
of the coherent neutron scattering lengths in a volume element having linear
dimensions on the order of the neutron wavelength, divided by the volume
of the element. Scattering length densities thus have dimensions of inverse
area. Scattering lengths are the fundamental measure of the neutron–nucleus
interaction and vary from one isotope to another in an essentially random
but fixed manner. Coherent, in this context, refers to the component of the
interaction that enables neutrons scattered by nucleii at different points in
the film to interfere, much as ripples on a pond. It is such interference which
makes the scattering dependent on spatial structure.

We have assumed the ideal situation for specular scattering where the SLD
varies only along the surface normal. In general the SLD ρ(x, y, z) can vary in
all three directions in the film , so that the true reflection problem is inherently
three–dimensional. Thus, the SLD ρ(z) appearing in eq. 1 is defined as

ρ(z) = lim
S→∞

1
S

∫∫

S

ρ(x, y, z) dS ≡ 〈ρ(x, y, z)〉xy , (2)

where S denotes the surface area of the film. In–plane variations of the SLD
give rise to non–specular scattering. In the most extreme case, the specular re-
flection caused by ρ(z) and the non–specular reflection caused by ∆ρ(x, y, z)
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Fig. 1. Scattering length density depth profile, along the surface normal, of arbitrary
shape represented by rectangular bins or slices over each of which the density is taken
to be constant.

interfere with one another, so that the resultant reflectivity can not be ex-
pressed as two distinct contributions. However, in many cases of interest, ei-
ther the non–specular component is negligible or the two contributions are
separable. When lateral variations of the SLD are random, the measured
reflectivity represents a ”thermodynamic” average of the reflectivity over a
suitable ensemble of such configurations. For cases where ρ(x, y, z) is ”self–
averaging,” i.e., where 〈ρ(x, y, z)〉xy = 〈ρ(x, y, z)〉therm, it can be shown that
the specular reflection determined by ρ(z) and the and non–specular reflec-
tion induced by the residual ∆ρ(x, y, z) are decoupled from one another [14].
Even then, however, we need to know how to separate them. The specular
reflectivity is defined as the ratio of the specularly reflected intensity to the
incident intensity; the non–specular intensity affects both. When the instru-
ment is configured to collect the specular signal (i.e., on the specular ridge),
some fraction of the non–specular intensity is also counted and, therefore,
must be subtracted. At the same time, non–specular intensity in other di-
rections diminishes incident intensity which would otherwise cause specular
reflection.

For both computational and analytic purposes, an SLD profile ρ(z) of any
shape can be accurately represented, for measurements up to a finite maximum
Q = Qmax, by a piecewise continuous subdivision, ρpwc(z), into a sufficient
number of rectangular slices, or ”bins’” of widths ∆z << π/Qmax, where
the SLD within each slice is taken to be constant, as depicted schematically
in Fig. 1. The fundamental quantity describing the specular reflection of the
neutron by the membrane is the spectrum (as a function of Q) of the reflection
amplitude r, a complex number, r = |r| eiφ of modulus |r| and a phase φ.
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Similarly, the transmitted wave is characterized by a transmission amplitude
t, but it turns out that all of the relevant information is contained in the
spectrum of r. To set up equations which describe the relationship between
r, t, and ρ, we first make the piecewise continuous rendering of ρ(z) explicit
with

ρpwc(z) =

{
ρj if (j − 1)∆z ≤ z < j∆z

0 otherwise
, (3)

where j = 1, · · · , N . Thus ρpwc(z) is a ”histogram” of N bins of uniform
width ∆z = L/N , where ρpwc(z) = ρj in the j–th bin. Next, we partition
the z–axis (along the film normal) into three contiguous regions: region I, the
”fronting,” where z < 0; region II, the ”film of interest,” where 0 ≤ z ≤ L;
and region III, the ”backing,” where z > L. The fronting is defined as the
region containing the incident and reflected beams, while the backing is the
region of the transmitted beam, regardless of how the film is mechanically
supported. In region I, ρ(z) = ρI, and in region III, ρ(z) = ρIII, where ρI

and ρIII are known constants (typically, the SLD values for air or vacuum,
silicon, sapphire, and mixtures of water and heavy water, as appropriate to
the experiment). With each of the regions of constant SLD, viz., I and III and
in the slabs comprising ρpwc in II, we can associate a wavevector component
along the z–axis

kI,II,III
z = k0z

√
1− 4πρI,II,III/k2

0z ≡ nI,II,III
z k0z . (4)

(From now on we will suppress the ”z” subscript on k.) Note that in region II,
where ρ = ρpwc has values ρj , kII

z has the corresponding values kII
j . In regions

I and III, the physical solutions of eq. 1 have the simple plane wave forms [15]

ψI,III(z) =

{
eikIz + re−ikIz for z < 0,
teikIIIz for z > L,

. (5)

These solutions (and their derivatives) are ”transferred” across region II by
the matrix equation [15, 11],

(
t

inIIIt

)
eikIIIL = M

(
1 + r

inI(1− r)

)
(6)

where the transfer matrix M =
(

A B
C D

)
is a 2× 2 real valued matrix having

unit determinant, AD −BC = 1. For ρpwc, this is the matrix product

M = MNMN−1 · · ·Mj · · ·M2M1 , (7)

where Mj is the transfer matrix for the j–th bin,
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Mj =
(

cos(kII
j ∆z) sin(kII

j ∆z)/nII
j

−nII
j sin(kII

j ∆z) cos(kII
j ∆z) .

)
(8)

In general eq. 7 can represent any useful decomposition of ρ(z) into N con-
tiguous, non–overlapping segments.

Equation 6 stands for two simultaneous linear equations, which are straight-
forwardly solved for r and t as a function of the matrix elements A, B,C, and
D as functions of k0z. For the case of a ”free” film, i.e., a film in contact with
vacuum fronting and backing, the result for the reflection amplitude is

r =
B + C + i(D −A)
B − C + i(D + A)

=
B2 + D2 −A2 − C2 − 2i(AB + CD)

A2 + B2 + C2 + D2 + 2
, (9)

while the reflectivity, |r|2 = r∗r, is most simply represented by

2
1 + |r|2
1− |r|2 = A2 + B2 + C2 + D2 . (10)

While it is straightforward to compute the reflectivity for a given model
SLD profile, the so-called ”direct problem”, deducing ρ from reflectivity data,
the ”inverse problem”, is much more problematic and inherently ambiguous
because of the ”lost” phase angle φ. Indeed, we see from eq. 9 and eq. 10 that
full knowledge of r needs three combinations of A, B,C, and D, viz., A2 +C2,
B2+D2, and AB+CD (because AD-BC=1,these are not completely indepen-
dent); while knowledge of |r|2 implies only the sum of squares combination,
A2 + B2 + C2 + D2. In practice, the determination of an SLD profile from
reflectivity data employs fitting schemes based on either model-dependent or
model-independent methods (see ref. [17, 18], for example). Figure 2 shows
SLD profiles for a pair of model thin film structures, having thicknesses and
SLD values typical of those of interest to us here (Fig. 2a), and the corre-
sponding specular neutron reflectivities (Fig. 2b), which are nearly identical
and thus demonstrate the importance of phase information—or its absence.
Even though it might not be possible to deduce from the reflectivity alone
which of two or more SLD profiles is the veridical one, i.e., the one that ac-
tually produced the data, it can be concluded whether or not a given model
SLD profile is at least consistent with the measured reflectivity. Furthermore,
a priori knowledge of the SLD in part of the film or the adjacent substrate
can be used to recover, in effect, some of the phase information: this can also
be accomplished by controlled manipulation of the SLD in certain sections of
the film, i.e., by exchanging hydrogen for deuterium [19]. Such partial phase
information can significantly reduce the number of acceptable solutions.

Methods have been developed to recover phase information through the
use of various reference structures—either adjacent films or surrounding media
[20, 21, 22, 23, 24, 25]. For some of these, the reflection amplitude for the
unknown part of the film can be obtained ”locally” (i.e., independently at
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Fig. 2. (a) Model SLD (neutron) profiles similar to two of the profiles considered
for x-ray reflection (Fig. 3 of Ref. [44]). Both profiles share a common ”reference”
or known segment between z = 20 Å and z = 60 Å. (b) Corresponding neutron
reflectivity curves calculated for the two composite SLD profiles in (a). The two
curves are practically indistinguishable from one another (after Fig. 10 of Ref. [16]).

any k) and exactly [22, 24]. It has been shown, that the reflection amplitude
and the SLD profile are in one–to–one correspondence for a large class of film
potentials. This means that the given profile produces a unique spectrum of
r and that a given r, if known for all Q, produces a unique SLD profile, when
using the appropriate mathematical tools to retrieve it [26]. Figure 3 shows the
real part of r (multiplied by Q2) for each of the two model SLD profiles of Fig.
2a: in stark contrast to the two corresponding reflectivity curves of Fig. 2b,
there is a marked, clearly distinguishable difference. An actual example which
demonstrates the phase inversion technique is given in Section 5. In practice,
the solution of the inverse problem is limited by the finite range of Q over
which it is possible to measure the reflectivity, but ambiguities introduced by
data truncation are systematic and, to a limited extent, treatable [27, 12].

The reflection amplitude has a number of useful theoretical representa-
tions. If we know the solution ψ of eq. 1 in region II, then an alternative, and
quite general, expression for the free film r can also be derived [28] using the
wave equation in eq. 1,

r =
4π

2ik0z

∫ ∞

−∞
ψ(z)ρII(z)eik0zz dz . (11)

Because ψ depends on r, eq. 11 actually represents an implicit equation for
r, but it does provide a useful starting point for formal analysis and for some
practical approximation schemes.
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Fig. 3. Q2Re r(Q) for the (reversed) film structures of Fig. 2a (not including the
backing but incorporating the known or reference sections of the films). These
Re r(Q) correspond to what would be retrieved, for example, by phase-sensitive
reflectivity experiments (for each of the two SLD profiles) in which the backing SLD
was varied according to the methods discussed in the text. In contrast to the situa-
tion illustrated in Fig. 2b, these curves are markedly different over a wide range of
Q. (After Fig. 9 of ref. [16].)

2.2 The Born Approximation

In general, as seen from eq. 11, the weaker the potential and the higher the
wavevector transfer, the smaller the reflectivity becomes. For reflectivities
of the order of a few percent or less, the neutron wave function within the
scattering medium is not significantly distorted from its free space, plane wave
form. In this case, ψ(z) in eq. 11 can be approximated by the incident wave
function, leading to the Born approximation (BA) or so–called ”kinematic”
result,

rBA(Q) =
4π

iQ

∫ ∞

−∞
ρII(z)eiQz dz , (12)

Thus, QrBA(Q) and ρII(z) are related by Fourier transformation. The factor
of Q−1 multiplying the integral in eq. 12 does not result from the BA; it is
the same factor appearing in eq. 11, the general expression, and is inherent in
the effective one–dimensionality of the specular reflection problem (i.e., the
infinite–slab geometry of the 3-D problem). The essential difference is that
the exact ψ(z, Q) approaches zero as Q goes to zero, unlike its plane wave
approximation, thus keeping r(Q) finite at Q = 0 in eq. 11. Of course, it is
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Fig. 4. Model SLD profile for a lipid bilayer as discussed in the text (left). Specular
reflectivity for the SLD profile calculated according to the exact theory as well as
in the Born approximation, assuming the bilayer to be free standing (right). Also
plotted is the reflectivity calculated according to the exact theory for the same
bilayer film but on a semi–infinite substrate of Si. The reflectivities according to the
exact theory and the BA are virtually indistinguishable on a logarithmic scale for the
free standing films, except in the neighborhood of the origin. Only the reflectivity
for the film on the substrate has a region of total external reflection (long–dashed
curve).

to be expected that the BA will fail as Q → 0, since, as |r(Q)| → 1 at the
origin, ψ(z, Q) becomes poorly approximated in region II by the ”undistorted”
incident wave. Figure 4 shows a model SLD profile for a lipid bilayer similar to
that deduced in a neutron reflectivity study of DOPC multilayers by Wiener
and White [29]. In Fig. 4 the specular neutron reflectivity |r|2 for the SLD
profile is plotted as a function of Q, calculated using the exact theory and
in the Born approximation for a freely standing single bilayer surrounded by
vacuum. Also shown is the reflectivity for the same bilayer on a substrate
(thick enough that it is effectively semi-infinite) as predicted by the exact
theory. In the latter case the Born approximation would fail not only at the
origin, but also in the neighborhood of the critical angle for total external or
mirror reflection (below which the reflectivity is unity).

2.3 Multilayers

In certain cases it is advantageous to reflect from a repeating or multilayered
assembly of membrane films instead of a single membrane unit. Since the
reflection from such structures tends to be concentrated at higher Q–values
than for single–layer thin films, the Born approximation can be particularly
valuable in analyzing reflection from them. For a periodic multilayer structure
(assuming ideally flat, parallel layers of uniform density and thickness), the
reflection amplitude in the BA is given by (ref. [28], for example)
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Fig. 5. Comparison of the reflectivities, calculated according to the exact and kine-
matic formulas, for M = 50 bilayers having the SLD profile of Fig. 4 (assuming no
substrate).

rBA
ML(Q) =

4π

iQ

[
sin(MQD/2)
sin(QD/2)

]
ei(M−1)DQ/2

∫ D

0

ρ(z)eiQz dz , (13)

for M repeats of a unit film (e.g., the bilayer) of thickness D. The integral over
ρ(z) is limited to the unit film. The effect of the M repeats appears only in the
prefactor, where (using L’Hospital’s rule) the ratio of sine functions in brackets
acts as a concentrator of reflection about the Nyquist lattice points, Q = Qm,
as M increases, where Qm = 2πm/D for integer m. Thus, for M large (but not
so large as to invalidate the BA), rBA

ML(Q) is strongly peaked on the Nyquist
points, in the manner of Bragg peaks in crystalography. Fig. 5 compares the
reflectivities, calculated with the exact and kinematic formulas, for M = 50
bilayers having the SLD profile of Fig. 4 (and assuming no substrate). Note
how the reflected intensity of the multilayer is localized about the Nyquist
lattice, in contrast to being more uniformly distributed over the entire Q–
range, as evident in Fig. 4. Clearly the kinematic theory can give a good
account of multilayer reflection.

Now the SLD profile of Fig. 4 is centrosymmetric along the z–axis and
can, consequently, be represented by a Fourier cosine series [30]

ρ(z) = A0 + 2
∞∑

m=1

Am cos (Qmz) (14)
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Fig. 6. SLD profile of Fig. 4 (dashed curve) compared to that obtained by the
Fourier series analysis of the reflectivity curve (exact result) in Fig. 5 described in
the text.

where the Am are real numbers.
From the reflectivity curve plotted in Fig. 5 (corresponding to the bilayer

of Fig. 4, with M = 50), the peaks up to the 10–th order, inclusive, were
used to determine the Fourier series of eq. 14, truncated at m = 10. The
resulting ρ(z) is plotted in Fig. 6, along with the original SLD profile of Fig.
4 for comparison. The agreement displayed in Fig. 6 is qualitatively good.
But even 10 perfectly ”measured” orders do not provide all the detail in the
veridical ρ(z).

2.4 Scale of Spatial Resolution

In assessing the value of SLD profiles inferred from reflection measurements,
we must know how much spatial detail is meaningful to expect from the
analysis; i.e., we can ask, what is the scale of spatial resolution – let us quantify
this as a length l – of the resulting ρ(z) ?

Let us say that we have perfect knowledge of the reflection amplitude r(Q)
up to a maximum value of Q = Qmax. (The experimental factors determining
Qmax will be discussed in a later section.) The dominant factor limiting the
spatial resolution ` of ρ(z) inferred from this knowledge is the value of Qmax,
according to ` = π/Qmax [11, 12]. For our purposes, this holds that the number
of spatial degrees of freedom N in ρ(z) for a film of thickness L, when r(Q)
is known for |Q| ≤ Qmax is given by (the integer part of) N = QmaxL/π,
referred to variously as the Nyquist or the Slepian number. Associating the
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corresponding scale of spatial resolution with ` = L/N , one has ` = π/Qmax

directly. In addition[12], ` also emerges explicitly from wavelet representations
of ρ(z), where ` is identified with the scale length of its most rapidly varying
”detail,” and N is the number of wavelets needed to fully describe ρ(z) on
this length scale. Indeed [11], as a special case, if we model ρ(z) by N bins
of uniform SLD and equal widths `, as in ρpwc(z) of eq. 3, then rBA(Q) in
eq. 12 is exactly invertible for ρpwc(z) over the Q–range, |Q| ≤ Qmax, where
Qmax = π/`

Now in general [12], let r(Q) be perfectly known for |Q| ≤ Qmax, and
call this conditional knowledge the function r(Q|Qmax). Then the inver-
sion of r(Q|Qmax) by a fixed procedure—namely the one we would use for
Qmax = ∞, but setting r(Q|Qmax) = 0 for Q > Qmax—determines a distorted
or ”smeared” version of the veridical ρ(z), say ρ(z|Qmax), which effectively
parameterizes ρ(z) on the spatial scale `. The maximum Q of the measure-
ment thus inherently limits the spatial resolution of ρ(z) that can be reliably
determined; the larger the value of Qmax, the smaller the scale ` of detail we
can know reliably.

What if our knowledge is limited to the reflectivity |r(Q|Qmax)|2? If we
consider the Born approximation, eq. 12, as an adequate basis for analysis,
then we may appeal to the well–known result that the Fourier transform of
Q2|rBA(Q)|2 directly determines the auto-correlation function

γ(z) =
∫ ∞

−∞
ρ(z − z′)ρ(z′) dz′ , (15)

which describes the smearing of ρ(z) by itself. This implies that for given Qmax,
if ρ(z|Qmax) is resolved to scale `, then γ(z|Qmax) is resolved to scale 2`. More
carefully, if ρ(z) is supported on an interval of length L, then γ(z) has support
of length 2L. Thus applying the same number of spatial degrees of freedom
to ρ(z|Qmax) and to γ(z|Qmax) leads to a scale of resolution 2` = 2π/Qmax

for the latter. The loss of phase information thus leads to a loss of spatial
resolution for finite Qmax.

3 Basic Experimental Methods

Neutron reflection can be done at both pulsed and continuous neutron sources.
The only essential differences between them in regard to instrumental tech-
nique involve the means by which neutrons of different wavelengths are uti-
lized and identified. With pulsed sources, the broad spectrum of wavelengths
present in each pulse can be used because, for elastic scattering, the wave-
length distribution of the beam can be determined by time-of-flight measure-
ment. For continuous sources, a relatively narrow band of wavelengths, as
defined by a crystal monochromator, is typically employed. The discussions
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to follow assume a continuous beam; for the most part, however, the experi-
mental methodology described is applicable to pulsed beam reflectometers as
well.

Another relatively general classification of neutron reflectometers can be
made. For studying interfaces between solid and another solid, fluid, or gas,
a sample can be oriented with its reflecting surface(s) vertical (and with the
scattering plane, as defined by nominal incident and reflected wavevectors,
horizontal). On the other hand, practical study of gas-fluid interfaces needs
the liquid to be horizontal. The primary difference between these two types of
reflectometers involves the mechanisms employed to direct the incident beam
onto the sample and subsequently detect the reflected beam. For the sake of
conceptual simplicity, we will assume the reflecting surface(s) of the sample to
be vertical so that the nominal direction of the incident beam remains fixed
relative to its source. Again, this choice does not limit, in any essential way,
the relevance of the discussion to the one configuration.

3.1 Instrumental Configuration

Figure 7 is a schematic diagram of a typical neutron reflectometer, which is
representative of the NG-1 reflectometer at the NIST Center for Neutron Re-
search. The polarizing and spin flipping devices shown can be ignored for the
present discussion, but are essential for magnetization depth profile measure-
ments performed with polarized beams [32]. Within the core of the reactor,
neutrons are produced by nuclear fission. The relatively high energies of these
neutrons are subsequently moderated by collisions with heavy water at room
temperature, resulting in a characteristic distribution of wavelengths with a
peak in elastically reflected intensity (for Q = 0.1 Å−1, and ∆Q/Q = 0.05)
occurring at a wavelength about 1.5 Å. The energy distribution is further
moderated by the liquid hydrogen ”cold source”, shown schematically in Fig.
7, shifting the peak in elastically reflected intensity to approximately 5 Å.
The beam of cold neutrons is transported through an evacuated rectangular
guide, the smooth, flat interior walls of which are coated with a Ni film which
gives a relatively large critical angle for total external or mirror reflection of
about 0.1 deg per ångstrom of incident wavelength.

This beam then impinges upon a pyrolytic graphite monochromating crys-
tal array which Bragg reflects a vertically focussed beam onto the sample.
The (002) atomic planes of the graphite crystal reflect a beam with a nominal
wavelength λ = 4.75 Åfor the chosen 90o scattering angle 2θM (λ = 2d sin θM ),
where d is the (002) atomic plane spacing, approximately 3.354 Å, and θM

is the glancing angle of incidence measured from the crystal surface. The
pyrolytic graphite consists of microcrystallites, which are essentially perfect
single crystals of hexagonally arrayed carbon atoms, having dimensions of
hundreds to thousands of Ångstroms, both along the (002) direction and per-
pendicular to it.
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Fig. 7. Schematic of a typical neutron reflectometer (representative of the NG–1 po-
larized beam reflectometer at the NIST Center for Neutron Research; the polarizing
and spin flipping devices are used in the determination of the vector magnetization
depth profile in magnetic films and can be ignored for this presentation).

The beam reflected onto the sample by the monochromating crystal has a
wavelength distribution determined mainly by the angular distribution of neu-
trons within the guide, the FWHM of the angular distribution of the graphite
crystal’s mosaic blocks, the interplanar spacing of the (002) graphite atomic
planes, and the horizontal angular collimation of the beam (defined by the
pair of vertical slits preceding the sample, as shown in Fig. 7.) A typical hor-
izontal angular divergence is between 1 min and 10 min of arc, and because
this is relatively small compared with that in the guide and the crystal mosaic
angular spread, the wavelength resolution, ∆λ/λ, principally depends on the
latter two fixed quantities and is about 1 %.

As pictured in Fig. 7, each finger of a vertically focusing monochromator
array is a stack of several graphite crystals, slightly inclined relative to one
another, so as to create a broader (but effectively anisotropic) mosaic, thereby
widening the wavelength band (to increase the intensity within the limits
allowed by a given Q–resolution). At the NCNR NG-1 reflectometer, the 15 cm
beam height in the guide is focused down to about 3 cm at the sample position
so that the vertical angular divergence is approximately 2.5o. For specular
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reflectivity measurements, this relatively relaxed vertical angular divergence
has a negligible effect on the Q–resolution.

Downstream of the sample position is a second pair of slits before the de-
tector which are primarily used to suppress incoherent scattering background.
For specular reflectivity measurements, the wavelength distribution and an-
gular divergence of the incident beam, in conjunction with the glancing angle
of incidence that the beam makes with the surface of a flat sample, deter-
mine a nominal value of Q and its associated resolution width. In addition,
the slit just before the detector is needed to properly shape the instrumental
resolution function in performing nonspecular scattering scans perpendicular
to the specular direction. In the latter case, the slit before the detector is
significantly narrowed as the sample angle is rotated with the detector at a
fixed scattering angle (this results in a trajectory in reciprocal space that is
nearly orthogonal to the specular direction for sufficiently small angles). For a
sample that is distorted enough from perfect flatness, slits following the sam-
ple may block contributions to the reflected intensity from certain distorted
regions of the sample surface from reaching the detector, thereby effectively
improving the Q–resolution for specular reflection.

3.2 Instrumental Resolution and the Intrinsic Coherence Lengths
of the Neutron

The theory of neutron reflection discussed in Sec. 2 assumed that each neu-
tron in a beam of noninteracting, independent particles could be described
by a single plane wave of infinite spatial extent. Generally, a neutron is more
accurately described as a superposition of component plane waves, commonly
known as a wave packet [13]. The wave packet description follows from local-
ization of the neutron in space and imparts characteristic coherence lengths,
both parallel and perpendicular to the direction of propagation defined by
a nominal neutron wavevector k. These lengths—a measure of the combined
uncertainties in position and momentum that must be associated with an indi-
vidual neutron—determine the effective volume of the scattering medium with
which the neutron wave packets coherently interact, and, consequently, they
are important to interpreting specular reflectivity data. However, because the
neutrons constituting the incident beam originate from different, uncorrelated
points within the source, there is an additional component of uncertainty in a
distribution of nominal neutron wavevectors. This incoherent component can
dominate the coherent, wave–packet–spread component, ultimately leading to
the familiar ”instrumental resolution” distribution in Q. In–depth, quantita-
tive treatments of neutron coherence and instrumental resolution are given
in several places [33, 34, 35, 36, 37, 38]. Nonetheless, it is worthwhile here to
consider these points further, at least qualitatively.
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Fig. 8. Schematic representation of two independent, noninteracting neutrons, ”A”
and ”B”, emanating from different places in the cold source and passing through
common instrumental optical elements en route to the sample. The size and shape
of the wave packet describing neutron A is similar to that of B, but each packet has
a different nominal wavevector direction. See the discussion in the text regarding
coherent vs. incoherent components of the effective instrumental resolution.

3.3 Incoherent versus Coherent Effects

Figure 8 shows a liquid hydrogen moderator which acts as an incoherent source
of neutrons for a specular reflectivity experiment to be performed downstream
in a geometrically well–defined beam. Each of two neutrons, ”A” and ”B”,
radiates from a separate region of the liquid hydrogen cold source, as a result of
an incoherent scattering event involving a single hydrogen nucleus. In general,
all the coherent interactions of either neutron with objects along its path to the
sample—e.g., the guide walls, a particular monochromator microcrystallite,
and the pair of rectangular apertures preceding the sample—contribute to
redefining the size and shape of the wave packet representing that neutron
when it eventually encounters the sample. Nonetheless, let us assume that
neutrons A and B are represented by wave packets of the same size and shape.
Each neutron wave packet then possesses the same characteristic coherence
lengths related to the uncertainties in position (∆x,∆y, ∆z) and wavevector
(∆kx,∆ky,∆kz) of the neutron, that, as mentioned above, define a volume
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over which the neutron interacts with the sample. Any size and shape wave
packet is an appropriately weighted superposition of plane waves [13]. The two
neutrons travel in different directions, defined by their nominal wavevectors,
so that each neutron is Bragg reflected from a separate monochromator crystal
segment (but through the same pair of apertures) onto the sample. The latter
fact means that the values of the normal component of the incident wavevector
k0z = Q/2 for the two neutrons differ from one another.

For specular reflection, we need only consider the z-axis normal to the
plane of the film. In practice, at a continuous source, specular reflection
measurements are performed with neutrons having nearly the same nomi-
nal k0 incident at different glancing angles θ, so that the resulting range of
k0z = k0 sin θ values are obtained by changing the angle of incidence. Then,
the relevant longitudinal coherence length effectively is the projection of the
neutron wave packet coherence length along z. (See [39] for the case of nor-
mal incidence with ultra-cold neutrons.) The reflectivity, |r|2, which results
for a single plane wave incident on a perfectly flat and homogeneous Ni film
1000 Åthick is plotted in Fig. 9. As is well–known, the oscillations evident in
Fig. 9, the so–called ”Kiessig fringes”, are produced by interference between
parts of the wave that are scattered from front and back film surfaces; the
period of the oscillations is approximately 2π/L. Such interference requires
that the incident plane wave interact with both interfaces ”coherently”, i.e.,
simultaneously.

For a one–dimensional incident wave packet with a finite characteristic
coherence length along the z-axis eq. 1 must be solved. We can describe the
incident wave function as a wave packet ψWP(z)coh consisting of a superposi-
tion of plane waves, each component having a well defined value of kz, viz.,

ψcoh
WP(z) =

∫ ∞

−∞
φ(kz|k0z)eikzz dkz (16)

where the normalized weighting φ(kz|k0z) might, for instance, be represented
by a Gaussian distribution centered on the nominal k0z, viz.,

φ(kz) =
2

Γcoh

√
ln 2
π

e
−4 ln 2
Γ2
coh

(kz−k0z)2

, (17)

where Γcoh is the FWHM of the distribution. For such a Gaussian wave packet,
the relationship between uncertainties ∆kz and ∆z of wavevector and position,
respectively, along z is given by the Heisenberg uncertainty relation

∆z∆kz =
1
2

. (18)

Although we will not explicitly solve the wave equation for the case of an
incident wave packet here, let us call the result of that calculation for the
reflection amplitude rcoh

WP(k0z), where k0z denotes the nominal kz for the wave
packet. To a first approximation, rWPcoh is a superposition of ”components”
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Fig. 9. Specular neutron reflectivity for a free–standing Ni film, 5000 Åthick. The
oscillations are a result of the interference which occurs in the simultaneous scatter-
ing of the wave from front and back surfaces of the film, as discussed in the text.
The period of the oscillations is approximately 2π/L.

r(kz) with the same weighting φ(kz|k0z) as in eq. 16. The resulting specular
reflectivity for the case where the incident neutron is described as a wave
packet with a coherence length L′ << L along z does not display the pro-
nounced Kiessig fringes appearing in Fig. 9 because the degree to which the
neutron can coherently interact with front and back surfaces is significantly
diminished.

Let us now consider a collection of neutrons which constitute an incident
beam. Let us assume that every neutron in the beam is described by the
same one–dimensional wave packet and coherence length, but that there now
exists a distribution of different nominal wavevector magnitudes, k0z, distinct
from the distribution of kz about a given k0z in a wave packet. We can,
for convenience, choose this distribution also to be Gaussian. However, the
distribution of k0z describes an incoherent association of our ”test” neutrons
A and B, in the sense that each neutron in the beam reflects from the film
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independently. Thus, the measured reflectivity RM(QM), at nominal Q = QM,
for an incident beam of such neutrons is the average over Q = 2k0z of the
wave packet reflectivities |rcoh

WP(Q)|2; viz.,

RM(QM) =
2

Γinc

√
ln 2
π

∫ ∞

−∞
|rcoh

WP(Q/2)|2e−
4 ln 2
Γ2
inc

(Q−QM)2

dQ , (19)

where Γinc is the FWHM of the Q–distribution. The convolution in eq. 19
is the ”instrumental resolution” commonly employed—but usually with rcoh

WP

replaced by r for the ideal case of an incident plane wave—and also contributes
to smearing the fringes in Fig. 9. Thus, instrumental resolution should be as
tight as reasonably possible, especially where eventual knowledge of rcoh

WP is
the goal of the measurement.

Thus, the source of the neutrons and their interactions with instrumental
components, which combine to define the size, shape and direction of each
neutron wave packet, determine both coherent and incoherent distributions
of possible wavevector components in the measurements. The coherent con-
tribution characterizes the wave packets describing individual neutrons, our
A or B, while the incoherent contribution emanates from the pathways taken
by different neutrons, A and B. For example, diffraction by a sufficiently nar-
row slit aperture may significantly distort the nominal neutron plane wave,
leading to a coherent distribution of wavevectors (common to A and B), while
the mosaic structure of the monochromator induces an incoherent spread of
wavevectors incident on the sample, distinguishing A from B.

3.4 In–plane Averaging

In–plane structure causes non–specular reflection, as previously mentioned,
but even when this is weak enough to be ignored, the observed specular
reflection will be influenced by lateral variations of the depth profile. The
common assumption is that the laterally averaged scattering length density
produces the specular ”component” of reflection. That is, if the SLD profile
is described everywhere in the film by ρ(x, y, z), then the reflection amplitude
r(Q) is caused by its lateral average ρ(z) = 〈ρ(x, y, z)〉xy, as introduced in eq.
2 and the related discussion. This can be true, however, only to the extent
that the neutron beam is laterally coherent over the surface of the film, so
that such an average is meaningful.

In three dimensions, we can ascribe two coherence lengths to the incident
neutron wave packet: a longitudinal coherence length `cohz , which is the co-
herence length we had in mind in discussing the immediate implications of
eq. 18 in terms of film thickness; and a lateral or in–plane coherence length
`cohxy , which limits the size of the surface the incident wave packet ”coherently
sees.” Note that the coherence lengths discussed here are the projections of
the neutron wave packet coherence lengths, parallel and perpendicular to its
nominal wavevector, projected onto the coordinate axes of the sample.
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Fig. 10. Schematic representation of neutron coherence length and in–plane dimen-
sions of homogeneous sample areas.

Now in eq. 19 we implicitly assumed that the film was laterally homoge-
neous. More generally, however, the reflectivity

∣∣rcoh
WP

∣∣2 appearing in the ”inco-

herent” convolution integral must be replaced by a lateral average
〈∣∣rcoh

WP

∣∣2
〉

xy
.

For example, a sample characterized by partial coverage might comprise a film
composed of two (fully and partially covered) components and a correspond-
ing scale of inhomogeneity `xy equal to the larger of the dimensions associated
with the fully and partially covered regions. In cases where `cohxy >> `xy, the
film appears to the neutron beam as homogeneous, and the specular reflec-
tivity is caused by the corresponding lateral average, 〈ρ(x, y, z)〉xy, as in eq.
2. However, when `cohxy << `xy, the film appears, instead, as a collection of
several types of films, each of which reflects the neutrons according to their
”local” ρ(z). Then the measured reflectivity is an areally weighted average of
reflectivities from several different films. That is,

〈∣∣rcoh
WP

∣∣2
〉
'

{∣∣rcoh
WP

∣∣2 , for `cohxy >> `xy∑
j wj

∣∣rcoh
WP,j

∣∣2 , for `cohxy << `xy ,
(20)

where wj is the weighting for the j–th type of in–plane component. In the
second case, unlike the first, there is no corresponding physically defined ρ(z),
so any attempt to analyze the reflectivity in terms of ”the” SLD profile that
produced it must fail, unless wJ ≈ 1 for some j = J .

Thus we must ask, how do we know which case of eq. 20 is the correct
one for a given experiment? In some cases a visual inspection of the sample
may suffice to say; if we can literally see, i.e., with visible light, evidence for
lateral homogeneities much greater than the neutron coherence length, then
the much shorter wavelength neutron beam can ”see” it too. However, a film
may appear visibly homogeneous while still behaving as if `cohxy << `xy and
thus acting as an inhomogeneous collection of reflectors.

Now consider the specific case in which regions of two different SLDs are
distributed within the plane of the film as shown in Fig. 10a and 10b. If
the linear dimensions of the area of either SLD is much smaller than the in–
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Fig. 11. Specular reflectivity: a) corresponding to picture in Fig. 10a; and b) cor-
responding to picture in Fig. 10b; it is assumed that the two different SLDs cover
equal areas in both cases.

plane projection of the neutron coherence length, as schematically represented
by the straight line in Fig. 10a, then the neutron wave effectively averages
over the SLDs of the two regions; i.e., the measured specular reflectivity is
that for the areally weighted average, as plotted in Fig. 11a. However, if the
linear dimensions of either SLD component are much larger than the in–plane
coherence length, the measured reflectivity is the incoherent sum of two areally
weighted reflectivities, as in eq. 20, each corresponding to one region of SLD,
as plotted in Fig. 11b (assuming equal weightings). This suggests that use of
samples with known in–plane SLD distributions, such as might be fabricated
by lithographic techniques, could be used to infer neutron coherence lengths
independently, to some degree, of the incoherent instrumental resolution.

In typical reflectometer configurations, similar to those discussed above
for specular measurements, except for a tighter horizontal aperture in front
of the detector, it is possible, by observing non–specular reflection at low
Qz, to resolve in–plane structures, e.g., lithographically patterned surfaces,
with dimensions of tens of microns. Indeed, the rulings of optical diffraction
gratings can be measured with neutron reflectometry.

3.5 Q–Resolution for Specular Reflectivity, Assuming an
Incoherent Beam

It is instructive and practical to consider the common situation where the
wave packets are well approximated by ideal plane waves (wave packets hav-
ing a very narrow distribution of wavevectors), so that resolution in fact is
dominated by an incoherent distribution of mean wavevectors. The instru-
mental Q–resolution for specular reflection is then determined by applying
the simple laws of geometrical optics for reflection and refraction to the re-
flecting guide, the mosaic crystal monochromator (for which Bragg’s law is
also imposed), the pair of slits preceding the sample, and the surface of the



22 Chuck Majkrzak et al.

sample itself (since the flatness of the sample also affects the measured value
of Q).

Figure 12 resolves the incident and reflected wavevectors, ki and kf , re-
spectively, into their rectangular components. From the diagram we can write

kµx = k cos αµ cos θµ

kµy = k sin αµ

kµz = k cos αµ sin θµ

(21)

where µ = i, f and k = 2π/λ. For specular reflection θi = θf , and, given that
α typically is at most a few degrees, the expression for Q (i.e., Q = −Qz =
ki − kf , as defined in the Introduction) reduces, to a good approximation, to
the familiar

Q = 2k sin θ . (22)

In terms of wavelength λ and the grazing angle θ, the fractional uncertainty
in Q then is

δQ

Q
=

δλ

λ
+

δθ

tan θ
, (23)

which, for the typically small angles in reflectivity experiments, is approxi-
mately

Fig. 12. Incident and reflected neutron wavevectors resolved into their respective
rectangular components.
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δQ

Q
≈ δλ

λ
+

δθ

θ
, (24)

since tan θ ≈ sin θ ≈ θ. As mentioned earlier, the angular divergences of the
beam impinging on the monochromator crystal and the monochromator’s mo-
saic distribution are normally significantly greater than the divergence defined
by the slits which determine δθ. In this case the fractional wavelength uncer-
tainty is nearly independent of θ, and the two contributions to the fractional
uncertainty in Q can be taken to be independent, so that

δQ

Q
≈

√(
δλ

λ

)2

+
(

δθ

θ

)2

. (25)

Usually in specular reflectivity measurements, the slits preceding the sample
are opened proportionally with θ, once the sample has fully intercepted the
entire width of the incident beam, so that δQ/Q (as well as the ”footprint”
of the beam on the sample) remain approximately constant with θ and Q (in
the small angle approximation). A typical value of δQ/Q is 0.025.

3.6 Measurement of the Reflectivity

To obtain the specular reflectivity, the reflected intensity is first measured as
a function of wavevector Q—at a continuous source, by varying the incident
angle θ at fixed wavelength and using eq. 22—up to a maximum value Qmax

at which the signal to noise ratio S/N becomes prohibitively low. Background
from incoherent scattering within the sample, substrate or surrounding media,
as well as from external sources must be measured and then subtracted from
the measured reflected intensity. The resultant signal next must be divided by
the incident beam intensity (which is also a function of θ if the slits are opened
with increasing reflection angle). Corrections to the reflectivity spectrum also
must be applied at values of Q below which the sample does not fully inter-
cept the width of the incident beam (the so–called ”footprint” correction).
Finally, at least in principle, the instrumental resolution function needs to be
deconvolved from the measured reflectivity data, at least when the resolution
correction is significant enough to warrant it. However, in practice this rarely
is done because deconvolution is a mathematically problematic operation on
finite data sets. In the following subsections, some of the practical aspects of
data reduction are discussed.

3.7 Sample Alignment

In order to obtain quantitatively accurate reflectivity data, proper sample
alignment is essential. The procedure for accomplishing this is straightforward
but can be complicated by substrates deformed from perfect flatness. The goal
is to align the sample surface such that it is parallel to and bisects the width of
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the incident beam, viewed as a ribbon. (It is presumed that the centers of the
beam and sample surface coincide.) A rough orientation of the sample can be
obtained optically by translating the reflecting surface close to the center of
the beam defined by the slit apertures and rotating the sample to be parallel
with the beam. Any angular tilt of the sample away from vertical, about the
horizontal axis of the incident beam, can be eliminated either using a laser
beam reference or even a mechanical plumb line.

Then, the detector can be set at zero scattering angle (for specular reflec-
tion, the detector is always positioned at a scattering angle twice the reflection
angle of the beam relative to the sample surface) with the pair of slits pre-
ceding the sample set so that the horizontal divergence is relatively tight, of
the order of a minute of arc. The slit immediately following the sample can
be set wide enough to accept the entire divergent width of the beam, but the
last slit before the detector should be set to a width comparable to that of the
first two slits in order to be sensitive to rotations of the sample. The sample is
then translated across the incident beam in a scan in which the transmitted
intensity is measured at each step. Once the translational position of the in-
terface is located, the sample is rotated in θ at this position with the detector
still at zero scattering angle. The occurrence of a central peak corresponds to
the position of the sample face being approximately parallel to the incident
beam; regions of minimum intensity on either side correspond to the inci-
dent beam being reflected by the surface of the sample at a finite scattering
angle (and, therefore away from the detector which is at zero scattering an-
gle). The two-step procedure just described can be repeated iteratively until
convergence.

With the nominal zero of the sample angle θ defined, the sample can be
rotated to a finite angle corresponding to a Q of 0.005 Å−1 (θ ≈ 0.1o for λ =
4.75 Å) with the detector at twice that angle (slit apertures unchanged). Now
a sequence of three scans can be performed: a rotation of the sample in theta
(about the vertical axis through the sample surface), referred to as a ”rocking”
curve; a translation of the sample through the incident beam; an angular
tilt of the sample about a horizontal axis through the center of the sample
surface. This sequence of scans is performed iteratively until convergence of
the sample rotation (to a peak position in θ that occurs at half the scattering
angle), translation, and tilt angle are each achieved. This process can also be
carried out at negative reflection and scattering angles, which corresponds to
the beam being incident from within the substrate (which is possible for the
case of a single crystal Si substrate which is highly transparent to neutrons).
Although no critical angle for total reflection may exist in going from the
denser (Si) medium to air for certain films on the surface, the reflectivity is
typically high enough.

A flat sample surface should result in a smoothly shaped rocking scan
curve resembling a Gaussian with a FWHM close in value to the angular
divergence defined by the pair of slits upstream. Any significant deviation
from this (assuming that the tilt was properly optimized), especially manifest
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as asymmetric or multiple peak shapes, is indicative of a non–flat sample
surface. As already discussed, a non–flat surface results in a broadened Q-
resolution which must be accounted for. If the broadening is acceptable, in
terms of resolution, precaution must still be taken that the slits downstream
of the sample open sufficiently to fully accept the increased divergence of the
specularly reflected beam on its path to the detector. This can be accomplished
in a straightforward manner by measuring the reflected intensity at a given θ
as a function of slit opening until a plateau is achieved. If a critical angle exists
for the sample being examined, it also is prudent to perform a longitudinal
scan (i.e., the specular θ–2θ scan) through the critical edge. If the sample is
long enough, then a plateau should be reached, below the critical angle, where
the reflectivity is practically unity.

3.8 Geometrical Beam Footprint Correction

If the sample is not long enough at lower reflection angles to fully intercept
the full width of the incident beam, a decreased reflectivity occurs. If the
sample has a critical angle, θc, above the point at which the surface intercepts
the full width of the incident beam, then the correction below that point is
trivial; the reflectivity simply is defined as unity for 0 < θ ≤ θc. However, if a
critical angle is too small or nonexistent, then another sample of the same size,
but with a critical angle that lies above the point of full interception, can be
measured under identical conditions to obtain the proper geometrical scaling
as a function of glancing angle. However, if the sample is not flat enough, an
accurate footprint correction may not be achievable.

3.9 Material Fronting Medium and Beam ”Side” Entry

Taking advantage of the near transparency to neutrons of Si, sapphire, or
quartz single crystals, the reflectivity of films deposited on such substrates
can be measured with a beam incident upon the film from within the sub-
strate. This makes it possible for a film of interest to be in contact with a
neutron–attenuating aqueous reservoir or other fluid medium, as shown in the
following subsection on cell design. In practice, incidence from within a sub-
strate typically requires the beam to enter through a surface of the substrate
perpendicular to the film, i.e., through a side of the crystal, as shown in Fig.
13. The beam incident from vacuum on the left enters the fronting medium
(single crystalline Si, for example) through a face which is perpendicular to
the plane of the film. The regions about the side boundary face and the film
surface (schematically indicated in the figure by the rectangular perimeters
in the figure) are assumed to be sufficiently separated that the neutron wave
packet does not interact with both interfaces simultaneously. As described in
the Introduction, for vacuum fronting, the value of the wavevector transfer
2kz in specular reflection, as measured in the laboratory, satisfies
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Fig. 13. Side-entry geometry typically employed in the case of a beam incident
through material (non–vacuum fronting).

2kz = |kf − ki| = 2kM sin θM = 2k0z = Q . (26)

Here the subscript M denotes quantites measured on the instrument in the
laboratory, as indicated in Fig. 13 (since, for vacuum, there is no side interface
to cross through). On the other hand, for nonvacuum fronting, a refractive
bending occurs as the neutron crosses the side boundary, which, from Snell’s
law, is

sin θM = nf sin θ (27)

where nf is the refractive index of the fronting medium

nf =

√
1− 4πρf

k2
M

, (28)

where ρf = ρI. The index of refraction is not to be confused with nI
z, defined

in eq. 4. Using eq. 27, the value of kz inside the fronting medium then is

kz = k sin θ = kMnf
sin θM

nf
= kM sin θM . (29)

The value of kz in the fronting is the value kMz measured on the instrument by
measuring θM and by computing kM = 2π/λ. However, according to the 1–D
description in eq. 1, for a given k0z, the wavevector incident on the film is kI

of eq. 4, as if side entry of the incident beam had not occurred. Therefore, to
adapt eq. 1 to side entry, its wavevector parameter k0z, or the corresponding
Q, must be identified in terms of the measured kz, as given in eq. 29. With
eq. 4 and eq. 29
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kI
z =

√
k2
0z − 4πρf =

2π sin θM

λ
, (30)

so that, solving for k0z,

Q = 2k0z =

√(
4π sin θM

λ

)2

+ 16πρf . (31)

Therefore, for nonvacuum fronting and with side entry, in comparing the re-
flectivity measured at an angle θM to a reflectivity calculated for a model SLD
profile, the value of Q at which the theoretical expression for r(Q) (or |r(Q)|2)
must be computed is given by eq. 31.

3.10 Sample Cell Designs with Liquid Reservoirs

In the study of biomimetic films, it is often required that the film be in contact
with an aqueous reservoir. As already discussed, the high transparency of
neutrons through single crystalline materials such as Si, Al2O3 , and SiO2

make it possible to construct fluid cells in which the single crystal serves both
as substrate and fronting medium for the neutron beam. In principle, the
design of a fluid cell is straightforward but, as is discussed in the following
section, contributions to the background from the media surrounding the film
can be the predominant factor which limits the maximum Q at which the
reflectivity can be measured and, consequently, the spatial resolution of the
SLD depth profile.

Figure 14 shows face and end-on views of a liquid cell that has evolved
as a standard piece of equipment for reflectivity measurements. The single
crystal fronting and backing are assembled from 7.62 cm diameter discs of
various thicknesses. Under the correct conditions, to be described below, such
a cell, in which the incident, transmitted and reflected neutron beams in the
vicinity of the sample are entirely within the single crystal media, typically
allows maximum Q in the range Qmax ≈ 0.3 Å to Qmax ≈ 0.4 Å. The single
crystal discs are normally polished on one side. Note that the sample may
be deposited on a thinner disc, e.g., 4.7625 mm, in contact with a thicker Si
piece; the relatively thin air gap in between produces no significant effect on
the measured reflectivity for such thicknesses. The thickness of the reservoir
next to the film is defined by an annular gasket (e.g., nitrile or other similarly
impervious material). This dimension can be as small as about 25 µm without
any significant effect on the measured film reflectivity from the face of the
backing crystal, but for reservoirs that are too thin, the possibility of coherent
contributions from the face of the backing crystal needs to be considered.
Naturally, the fronting and backing crystals must be sufficiently thick to fully
accommodate incident and reflected beam widths at the maximum reflection
angle. Fluid is introduced through a hole (e.g., ultrasonically drilled through
the single crystal Si or Al2O3 and of diameter 1 – 2 mm) near the bottom of
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Fig. 14. Schematic views, face– and end–on, of fluid reservoir cell used in neutron
reflectivity measurements as described in detail in the text.

the backing disc; a similar hole diametrically opposed at the top of the disc
serves as an outlet. The horizontal slits preceding the sample are continuously
adjusted throughout the specular scan to maintain a constant footprint. A
cylindrical ”top hat” made of aluminum can be placed around the sample
and the volume surrounding the cell filled with argon gas, which scatters
neutrons significantly less than air. Brass or copper heating/cooling blocks
can be attached to the aluminum cell frame at top and bottom. Temperature
control (over a range from about -10 C to 80 C) can be maintained by a
combination of fluid flow through the blocks and electrical resistance heater
cartridges.

It is difficult to overemphasize the importance of using substrates that have
been polished smooth and flat and of maintaining flatness in the compressed
sandwich of the cell. A root mean square (RMS) roughness about 3 – 5 Å is
obtainable and desirable since this ultimately limits the spatial resolution in
the measured SLD depth profile. Flatness, on the other hand, as commonly
used, is associated with in–plane areas comparable to or greater than the
coherence length (of order micrometers); the normals to these areas should
not deviate more than about 0.01o from the nominal direction. As discussed
earlier, deviations from perfect flatness also degrade the effective instrumental
Q–resolution for specular reflection measurements.

For a lipid bilayer on a Au film (thickness ≈ 100 Å) deposited on a 0.5 mm
thick Si substrate and placed next to a D2O reservoir of thickness ≈ 25 µm
(in this case defined by a gasket and another 0.5 mm Si crystal as backing),
specular neutron reflectivities have been measured for Qmax = 0.73 Å−1 [40].
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If the sample film can be exposed to a humid atmosphere instead of an
aqueous reservoir (e.g., water vapor in Ar), then it is advantageous for reduc-
tion of background to deposit the film of interest on a thin (e.g., 0.5 mm) single
crystalline substrate. The humidity can be controlled either by saturated salt
solutions or mechanical humidity generators.

3.11 Sources of Background

Normally, a single lipid bilayer membrane is itself a negligible source of inco-
herent scattering background. For a well–shielded instrument, external sources
of background can also be relatively insignificant. The major contribution to
the background in a specular reflectivity measurement most often originates
in the media surrounding the film which is exposed to an incident beam that
can be relatively intense at larger Q–values, where the slits are opened wide.
For polycrystalline substrates, even though the wavelengths are often long
enough that no Bragg scattering can occur (e.g., aluminum at λ = 5.0 Å),
small angle scattering from the crystal grains, as well as incoherent and in-
elastic scattering, can contribute. Single crystalline substrates can produce a
significant amount of incoherent and inelastic scattering, as well, but are usu-
ally preferred to polycrystalline or amorphous (e.g., glass) materials. If the
substrate contains a neutron absorber, e.g., boron in pyrex glass, the scatter-
ing that contributes to the background can be reduced, although the presence
of significant absorption requires that the substrate be used only as a backing
medium and that an imaginary component of the scattering length density for
the substrate be taken into account in the analysis of the measured reflectiv-
ity. In any event, one way to judge the potential of a substrate for producing
background, absent absorption, is to measure its transmission. Away from
the critical angle, specular reflection falls rapidly with Q, at least as fast as
Q−4 at large Q. Thus, at large Q, most of the beam should be transmitted
through the backing with a transmission close to unity. Measuring a reduced
value of the transmission, say, about 0.85 for a Si single crystal substrate
7.5 cm thick, implies that a substantial number of non–reflected neutrons are
scattered elsewhere, some fraction of which enter the detector as background.

In addition to substrates, an aqueous reservoir adjacent to the sample film
can also contribute a substantial amount of incoherent background, especially
if it contains H2O . Where possible, it is advantageous to use D2O in place
of ordinary water and to minimize the reservoir thickness. Note that single
scattering of a neutron from a hydrogen nucleus is most often an incoherent
event, resulting in an angularly isotropic distribution of scattered radiation.

Even when it is possible to use a thin single crystalline substrate, the air
surrounding the sample which is intercepted by the incident and transmitted
beams and simultaneously viewed by the detector can be a substantial source
of background. This background can be eliminated by placing the sample in
an evacuated chamber or by replacing the air with He or Ar gas, which scatter
significantly less than nitrogen and oxygen.
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Fig. 15. Plot of intensity vs. rocking angle (θ) at a fixed scattering angle for a
multilayer Ni/Ti sample with significant in–plane SLD variations, as described in
the text.

3.12 Background Measurement

To measure the background at a given Q, the detector angle 2θ is set close to
the specular condition but offset far enough to miss the specular signal. The
amount of offset for given slit openings and beam width can be determined
by performing a transverse scan along a direction perpendicular to the film
normal (z–axis) and with the horizontal width of the aperture in front of the
detector sufficiently tight; a rocking curve is normally a satisfactory approx-
imation. Note, in particular, that nonspecular reflection is not background,
which is more or less isotropic, but is scattering from in–plane variations in
SLD in the sample. As discussed earlier, the observation of significant non-
specular scattering requires proper evaluation of the validity of the use of
the one-dimensional specular scattering theory. Fig. 15 is a plot of intensity
versus rocking angle θ at a fixed scattering angle for a metallic Ni/Ti multi-
layered sample having a relatively large number of interfaces with roughnesses
that could be correlated from one layer to another, thereby manifesting some
degree of three–dimensional order.
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3.13 Background Suppression

In our discussion above, we already mentioned that background can be sup-
pressed by using thin single crystal substrates to support the film and to
replace the surrounding air with vacuum, He, or Ar gas. It was also men-
tioned how the pair of slits downstream of the sample have no effect on the
specular reflectivity measured from a flat sample. Instead, the slits following
the sample act to discriminate the specular reflected signal from signal have a
wider angular divergence. However, it can happen that the distance between
the two slits which define the incident beam angular divergence is greater than
that for the pair of slits which precede the detector. In such a case, opening
the slits after the sample just enough to allow the full width of the specularly
reflected beam through to the detector can result in a wider angular accep-
tance than that defined by the incident beam slits. Consequently, more of the
isotropic incoherently scattered background is allowed into the detector. To
remedy this, a set of parallel channels, called a ”Soller” collimator, can be
used to accept a wider beam at a narrower angular divergence more closely
matched to that of the incident beam. Either a Soller collimator with reflect-
ing partitions or one with non-reflecting, absorbing walls can be employed for
the purpose.

Alternatively, a mosaic crystal with an appropriate angular distribution
of mosaic blocks can be used to discriminate against a more widely divergent
incoherent background. Unfortunately, a Soller collimator or analyzer crystal
produces transmission and reflectivity losses for the specular signal, which
typically range between 20 % and 50 %. Therefore, proper analysis of the signal
to noise ratio, including efficiency, counting statistics, and error propagation
considerations, is required for the proper use of these devices.

3.14 Signal Enhancement

To improve the signal to noise ratio, it can be important to boost the signal,
as well as reducing the background. One method of signal enhancement that
has proven useful in the study of single lipid bilayer systems is to deposit a
Au layer, about 100 Å thick, onto a Si substrate. Then the film of interest is
affixed to the gold layer: e.g., an alkane thiol layer followed by a phospholipid
layer, and then a backing with a D2Oreservoir [40]. Because the reflectiv-
ity can be calculated for a model of such a system, it is relatively easy to
determine a feasible combination of the film of interest and signal boosting
layers, or surrounding media, that significantly increase the sensitivity of the
measurement.

3.15 Multilayer Samples: Secondary Extinction and Mosaic

In discussing the theoretical treatment of multilayer reflectivity within the
Born approximation, it is implicit that the reflectivity is sufficiently low that
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the reflectivity of a given reflection order is proportional to the square of the
number of bilayers M , as we derived above. However, in practice, multilayer
samples of lipid bilayers actually form structures similar to mosaic crystals,
having an angular distribution of coherently scattering blocks, each consisting
of a stack of bilayers. This angular distribution typically is centered about the
mean surface normal of the substrate, with the normal of an individual block
perpendicular to the plane of the lipid bilayers in that stack. As the incident
beam penetrates such a sample, its intensity can be diminished by successive
reflections from various stacks, so that a given reflection peak intensity no
longer is proportional to M2. This troublesome effect, called secondary ex-
tinction [5, 29, 41, 42], introduces further complications into the multilayer
analysis. It is necessary to recognize and take into account secondary extinc-
tion when it occurs so that an error is not made in determining relative reflec-
tion peak intensities. Recently, multibilayers of biofilm materials have been
made with a well–defined, relatively small number of bilayer repeats which
are appropriate for analysis using the dynamical theory outlined in Section
2.1 [43].

3.16 Data Collection Strategies for Time-Dependent Phenomena

In measuring specular reflectivity from thin film systems which may undergo
structural changes with time, specular scans must be performed over a given
range of Q in a time less than that required for any significant changes to
occur. This can be directly determined by superimposing reflectivity plots for
successive scans; successive runs can be added together to improve statistical
accuracy once equilibrium has been achieved. Whether the film under study
exhibits time–dependent behavior or not, it is prudent to perform rocking
curves in between specular or other scans, such as background, to verify correct
alignment of the sample.

4 Phase Determination Techniques

Earlier in the chapter we discussed the connection between the phase of the
complex reflection amplitude and the uniqueness of SLD profiles. Here we
continue discussion of phase-sensitive specular reflectometry techniques, out-
lining practical methods for determining the phase of reflection for a film of
interest using reflectivity measurements of composite film structures, i.e., film
sandwiches composed of the ”unknown” film adjacent to a reference layer or
to a known surrounding medium. These methods have been recently reviewed
in depth [11].

4.1 Reference Films

Figure 16a illustrates the measurements which are performed to determine the
SLD profile of a film, in this case a Cr/Au layer deposited on a Si substrate.
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Fig. 16. Diagram illustrating the measurements which are performed to determine
the SLD profile of an ”unknown” film, in this case a Cr/Au layer deposited on
a Si substrate which functions as the incident or fronting medium as well (a). By
measuring two reflectivity data sets the imaginary part of the reflection amplitude for
the ”unknown” film of interest, in this example the Cr/Au layers, can be determined
uniquely at each value of Q; the result is shown in (b). The upper right corner inset
of (a) shows the SLD profiles corresponding to independent fits of the reflectivities
for the two composite film systems. The imaginary part of the reflection amplitude
can then be inverted by a first principles calculation, as discussed in the text, the
result of which is also shown in (b). (After Figs. 2 and 3 of ref. [48].)

The reference layer consists of a ferromagnetic Fe layer with a magnetization
which is saturated in the plane of the film. For a polarized neutron in the ”+”
spin state (one of two possible spin eigenstates), the SLD of the Fe layer is a
sum of two parts, one associated with the nuclear interaction and the other
with the magnetic potential which exists between the magnetic moments of
the neutron and the Fe atoms. In contrast, a neutron polarized in the ”−” state
sees a SLD which is the difference of the nuclear and magnetic components. By
measuring two reflectivity data sets, one with a beam of neutrons in the ”+”
spin state and the other in the ”−” state, plotted in Fig. 16a, the imaginary
part of the reflection amplitude for the the Cr/Au film, can be determined
uniquely, exactly and independently at each Q [48]. The result is shown in
Fig. 16b. The imaginary part of the reflection amplitude can then be inverted
by a first principles calculation [26, 46, 47]. (More formally, either Re r(Q) or
Im r(Q) suffices for most of the SLD profiles of interest to biology.) The result
of inverting Im r(Q) of Fig. 16b is also shown in the figure. The SLD profile
so obtained is unique, to the extent allowed by the finite wavevector range
over which the original reflectivity data was collected. In solving for Im r(Q)
of the unknown, two roots of a quadratic equation are obtained, only one of
which is physical [25, 48]. The physical branch Im r(Q) can be determined,
in principle, because Im r(Q) must be a continuous function of Q with known
behavior at the origin, viz., Im r(Q) ← 0 from negative values for an overall
positive SLD. However, it can happen in practice that the separation of the two
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branches is problematic, especially for noisy data. The use of three reference
layers eliminates this problem—and, in fact, was the first of the exact reference
techniques for specular reflection [22, 23, 49]—but three references are difficult
to achieve using a single magnetic layer. Furthermore, in any finite reference
layer method for phase determination, the entire SLD density profile of each
reference layer used must be known with an accuracy commensurate with the
spatial resolution desired in the sample film profile. And of course, magnetic
references, in particular, require the availability of polarized neutron beams.

4.2 Surround Variation

A reference method closely related to that employing different layers of fi-
nite thickness, as described above, involves varying the surrounding media,
fronting or backing. This ”variation on a theme” has the important advan-
tage that only two constant SLD values, for either the fronting or backing, are
required to obtain Re r(Q) corresponding to the sample film, independently
at each Q, and without branch ambiguities [24], since, the resulting surround
variation equations are linear. One approach that has been successfully em-
ployed involves depositing the sample film on two different substrates, e.g.,
Al2O3 and Si, simultaneously and under identical conditions [27]. Care must
be taken to limit any differences between the two samples which could be
present, such as the presence of a native oxide layer on the Si or a layer of
different SLD on the Al2O3 due to the effects of surface polishing.

A less cumbersome approach employs a single sample and an adjacent liq-
uid reservoir of variable SLD. Figure 17a contains a schematic of a surround
variation method for phase determination in which the backing medium SLD
can have (at least) two values, in this particular example that of D2Oand Si–
(SLD) matched water—i.e., an H2Oand D2Omixture with approximately 38
% D2Oby volume. Figure 17 also shows the corresponding composite reflec-
tivity curves for these two backing media adjacent to the Cr/Fe/Au/alkane
thiol film indicated in the upper right hand corner of the figure. This is similar
to the film structure of Fig. 16, except that the Fe ”+” and ”−” layers are
now treated as part of the ”unknown” film. Included in Fig. 17a is Re r(Q) for
the unknown film, one in which the SLD of the saturated magnetization of the
ferromagnetic Fe layer is that seen by a spin ”+” state neutron beam. Lastly,
Fig. 17b shows the SLD profile obtained by direct inversion of the Re r(Q) of
Fig. 17a. For comparison, the SLD profile obtained for the ”−” state neutron
beam is also shown [45]. Note the consistency of the two results; the Au layer
SLD is virtually identical in both sandwich structures, the one with the Fe
”+” layer and the other with the Fe ”−” film.

4.3 A ”Sweet Solution”

Given the importance and ubiquity of aqueous solutions in the study of
biomembranes, the method of choice in phase-sensitive reflectivity measure-
ments would very likely be variation of the backing medium using a suitable
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Fig. 17. Schematic representation of a surround variation method for phase de-
termination in which the backing medium SLD can have (at least) two values, in
this particular example that of D2Oand Si–SLD–matched water (a). (a) plots the
corresponding composite reflectivity curves for these two backing media SLD val-
ues adjacent to the Cr/Fe+/Au/alkane–thiol film; note that this is similar to the
film structure of Fig. 16 except that the Fe ”+” layer is now treated as part of the
”unknown” film. (a) also shows Re r(Q) for the ”unknown” film, one in which the
SLD of the saturated magnetization of the ferromagnetic Fe layer is that seen by a
spin ”+” state neutron beam. Lastly, (b) shows the SLD profile obtained by direct
inversion of Re r(Q) of (a). For comparison, the SLD profile obtained for the ”−”
state neutron beam is also shown. (After Figs. 1 and 2 of ref. [45].)

fluid, except for one crucial concern. If the fluid differentially penetrates the
adjacent film of interest, then the reference measurement is destined to fail,
since an essential premise of the technique is that the film of interest be invari-
ant to the change in references. This restriction therefore precludes the use of
variation by D2O /H2Osubstitution if water penetrates the membrane, which
indeed is known to occur. This problem can be solved if an aqueous solution
could be found in which a suitable solute is the agent of SLD variation with-
out interfering with the film: possibly, for example, a sugar in D2O , where
sugar molecules—of variable concentration—do not penetrate or modify the
film, whether or not the constant D2Ocomponent is integral to the film. This
would indeed be a ”sweet solution” for surround variation in some problems.

4.4 Refinement

The formal inversion methods alluded to earlier begin with a Fourier transform
of Re r(Q) and thus require this information at all values of Q for exact im-
plementation. Thus, the resulting SLD profiles are distorted by unavoidable
data truncation, the effect decreasing systematically with increasing Qmax.
This means that the ρ(z|Qmax) obtained by inverting Re r(Q|Qmax) will not
exactly reproduce Re r(Q|Qmax) without additional refinement. Useful ap-
proaches to this problem [51, 18, 12] take ρ(z|Qmax) as a starting point for
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model independent fitting procedures designed to accept only spatial detail
consistent with the spatial resolution, l = π/Qmax. The resulting refinement,
say, ρ̃(z|Qmax), effectively represents the most that can be said about the
veridical ρ(z) at the given resolution.

4.5 Diagnostics

Only the real part of the reflection amplitude, Re r(Q), is necessary to obtain
the SLD profile by first–principles inversion for most films of interest, as men-
tioned in our discussion of surround variation, Sec. 4.2. Now the same infor-
mation which gives Re r(Q) also predicts Im r(Q), but only up to a quadratic
branch ambiguity, similar to that discussed in Sec. 4.1 for the technique using
two finite references layers. This ambiguity is of no concern to obtaining ρ(z),
but the ancillary, if incomplete, knowledge of Im r(Q) that also results from
surround variation happens to a useful diagnostic of film quality, because of
a seemingly arcane mathematical property of r(Q). It turns out that for a
perfect but arbitrary film of thickness L, the spectrum of Im r(Q) must pos-
sess a more–or–less uniform sequence of zeroes near multiples of Q = 2π/L,
suggestive of the Kiessig fringes seen in the reflectivity, as described in Sec.
3.3 [45]. On the other hand, Re r(Q) need display these zeros only if the film is
perfectly centrosymmetric. So, in fact, the Kiessig fringes observed in |r(Q)|2
normally are not the manifestation of zeros in r(Q) but rather of Im r(Q)
alone. In physical terms, these zeros are a property of coherent reflection from
laterally homogeneous film and are readily detectable even in the presence of
branch ambiguities. The absence of zeros, i.e., the presence of branch ”split-
tings” in Im r(Q), thus is a strong indication that the film under study is
defective in these terms.

For example, as discussed in Sec. 3.3, if a film is laterally inhomogeneous
on a scale large compared to the neutron coherence length, then the measured
specular reflectivity is an average of areally weighted reflectivities from the
separate inhomogeneous components, as given in eq. 20. In this case, there
is no single SLD profile associated with the measured reflectivity, and any
attempt to extract one, whether by inversion or fitting techniques, will produce
unphysical results. The absence of Im r(Q) splittings, beyond those consistent
with noise effects, are a good indication of acceptable film quality [27]. (A
film much thicker than the neutron coherence length can also cause a loss of
Im r(Q) zeros, in line with the discussion in Sec. 3.3; but this can be tested
instrumentally and normally is not a concern for thin films.)

5 An Illustrative Example

To illustrate the application of neutron reflectometry to the study of biofilms,
we consider the recent structural investigation of a hybrid bilayer membrane
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(HBM) and its interaction with melittin [40]. In this particular study, spec-
ular neutron reflectometry was used to probe the interactions of the pep-
tide toxin, melittin, with supported bilayers of phospholipid (d54-dimyristoyl
phosphatidycholine or dDMPC) and octadecanethiol (HS(CH2)17CH3) or thi-
ahexa(ethylene oxide) alkane (HS(C2H4O)6(CH2)17CH3 or THEO-C18) on
gold. This supported lipid bilayer consisting of adjacent ”leaflets” of alka-
nethiol and phospholipid forms a model biomimetic membrane. The primary
objectives of the study were to locate the position and orientation of the
melittin within the membrane and also to determine whether the ethylene
oxide moieties are hydrated when the HBM is in contact with water. Sample
preparation and other details of the experiments and analysis can be found
in the original work [40]. Figure 18 shows the SLD profiles of the THEO-
C18/dDMPC HBMs next to a D2Oreservoir with and without melittin, as
obtained from model-independent fitting of the corresponding reflectivity data
plotted in the inset [40]. Note that Qmax ≈ 0.73 Å−1, corresponding to a spa-
tial resolution about 0.5 nm.

Fig. 18. SLD profiles of the THEO–C18/dDMPC HBMs described in the text
next to a D2Oreservoir with and without melittin (darker shaded thick curve) as
obtained from model–independent fitting of the corresponding reflectivity data (filled
symbols without melittin) plotted in the inset [40]. (The Cr/Au metal layers, Cr,
20 Å thick, and Au, 65 Å thick, on Si, are not shown.) Note that Qmax ≈ 0.73 Å−1,
corresponding to a spatial resolution about 0.5 nm.
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Fig. 19. Phase–sensitive neutron reflectivity measurements performed on a self-
assembled THEO–C18 layer on a Cr/Au metallic bilayer, pre–deposited on Si and
Al2O3 single crystal substrates, followed by a dDMPC layer (left). Re r(Q) for the
common film sandwich determined from that reflectivity data is shown in the lower
part, along with a schematic for the phase–sensitive reflectivity measurements in the
upper right corner (details of the neutron reflectivity measurements and analysis are
given in [27]). SLD profile obtained by first–principles inversion (solid curve with
the more pronounced oscillations in the Au/Cr region due in part to truncation of
the data at Qmax) of the Re r(Q) (right) [27]. This unique solution is compared to
the prediction of a molecular dynamics simulation (other solid curve) [31].

In order to verify that profiles so obtained were physically meaningful,
phase–sensitive neutron reflectivity measurements were performed [27] on an
almost identical pair of samples: self-assembled THEO-C18 on a Cr/Au metal-
lic bilayer, predeposited on Si and Al2O3 single crystal substrates, followed by
the dDMPC layer. In this case, the Si and Al2O3 substrates served as two
different fronting media, with a common backing of Si SLD–matched water,
for collection of the pair of composite reflectivity data sets shown in Fig. 19.
Re r(Q) for the common film sandwich determined from that reflectivity data
by the surround variation solution is also shown in the figure, along with a
schematic for the phase–sensitive reflectivity measurements [27]. Figure 19
shows the ρ(z) obtained by first–principles inversion of the Re r(Q) using the
techniques of Sec. 4.2. This unique solution is compared to the prediction of
a molecular dynamics simulation [31]. The close similarity of the SLD profiles
of Fig. 18 (without melittin) and Fig. 19, gives confidence in the results.

The neutron reflectivity study described above indicates that melittin
strongly perturbs the phospholipid headgroup region, but also affects the
alkane chain region of the bilayer. Among other findings [40], these results
demonstrate the utility of neutron reflectometry in determining subnanometer
structural changes in biomimetic membranes caused by biologically relevant
molecules.
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